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AC conductivity of Se-Ge-As glassy system

in relation to rigidity percolation

M. FADEL, S.S. FOUAD
Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt.

Measurements of conductivity (ac & dc) and dielectric constant (ε) have been made for
amorphous alloyed samples of Se0.75Ge0.25−xAsx with x = 0.05, 0.10, 0.15 and 0.20 at
different temperature (289 to 389 K) and various frequencies (102 to 105 Hz). The
conductivity and the dielectric constant of these glasses have been explained on the basis
of the correlated barrier hopping (CBH) model. Recent progress in applying percolation
theory to explain properties and glass forming ability of chalcogenide glasses is critically
reviewed. Percolation theory is shown to be relevant to the liquid-state behavior of
glass-forming ability of the Se0.75Ge0.25−xAsx chalcogenide system. The relationship
between the optical gap (�Eg) and chemical composition is also discussed in terms of the
average heat of atomization (Hs) and the average coordination number (r). These findings
provide to some extent an important link between experimental and theoretical results.
C© 2001 Kluwer Academic Publishers

1. Introduction
The conductivity of semiconducting glasses is known
to be frequency dependent which, as expected is due to
conduction in localized state. Measurements of ac con-
ductivity is therefore a powerful experimental method
to obtain information about the existence and the lo-
cation of these states. The ac conductivity, σac(ω), of
amorphous chalcogenide semiconductors is usually ex-
pressed as

σac(ω) = σT − σdc = Aωs (1)

where ω is the angular frequency, A is a constant (s) is
the frequency exponent, and σT is the total conductivity
including the frequency dependent conductivity mea-
sured under ac field and σdc is the dc conductivity. This
equation is valid for several low mobility amorphous
and even crystalline materials [1]. Various models have
been proposed by several investigators [2–7] to explain
the behavior of the frequency exponent (s) in the case of
chalcogenide glasses. The Quantum-Mechanical Tun-
neling (QMT) proposed by Pollak and Geballe [2] was
the first type of charge transfer for doped crystalline
Si, then subsequently applied to the case of amorphous
semiconductors by Austin and Mott [7]. According to
the QMT the frequency exponent (s) is predicted to
be temperature independent, but frequency dependent
(s decreases with increasing frequency). The QMT as-
sumes that there is no lattice distortion associated with
the carrier whose motion gives rise to the ac conduc-
tivity i.e. polaron formation is not considered. There-
fore QMT is considered not applicable to chalcogenide
glasses. The correlated barrier hopping (CBH) model
proposed by Elliott [5] has been applied to the chalco-

genide glassy semiconductors. The CBH model is the
most acceptable model used to describe the ac conduc-
tivity behavior of amorphous semiconductors. In this
model correlated barrier hopping of bipolarons (i.e. two
electrons hopping between charged defects D+ and D−)
has been proposed to interpret the frequency depen-
dence of conductivity in chalcogenide glasses as given
in Eq. (1). The theory has explained many low tem-
perature features, particularly the dependence of the A
and s parameters on temperature. However, it does not
explain the high temperature behavior so well, in the
low frequency range. Shimakawa [6] suggested that D◦
states are produced by thermal excitation of D+ and /or
D− states, and that single polaron hopping (i.e. one elec-
tron hopping between D◦ and D+ or D−) contributes at
high temperature Generally the electrical properties of
glasses depends on the chemical composition and the
structural features. The concept of the average coor-
dination number, r , is useful in describing the cross-
linking in such a glass: it is defined as the atom aver-
aged covalent coordination of the constituents. Several
structural models describing composition property re-
lationship have been presented for these glasses. Most
of these models are based on Phillips constraint theory
[8, 9], which predicts a transformation from undercon-
strained or floppy network to overconstrained or rigid
network. This study has two objectives; the first was
to study the conduction mechanism of our Se-Ge-As
glassy system, and consequently determine its related
parameters such as the frequency exponent (s) the fre-
quency dependence of the dielectric constant ε, and the
ac activation energy Wm; and the second was to clar-
ify the concept of constraint theory and surface floppy
modes for the system under investigation.
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2. Experimental details
Four different composition of Se0.75Ge0.25−x Asx chal-
cogenide glass system with x = 0.05, 0.10, 0.15 and
0.20 were synthesized by melting the elemental com-
ponents of high purity (99.999%) in evacuated silica
tubes in an oscillatory furnace according to a technique
reported previously in [10]. The proper ingots were
confirmed to be completely amorphous using X-ray
diffraction given in [11], and differential thermal anal-
ysis given in [10, 11]. Polished bulk samples in the
form of pellets thicknesses (0.417, 0.409, 0.518 and
0.347 cm) were used for the measurements of ac and
dc conductivity. These measurements were made be-
tween a temperature range 289–389 K. Total conduc-
tivity σT was measured on automatic RCL meter (PM
6304 Phillips) and ac conductivity σac was calculated
by using Eq. (1) where, σdc (dc conductivity) was mea-
sured using a Keithly electrometer (type E 616A). The
ac conductivity and the dielectric constant were mea-
sured at various frequencies 102 to 105 Hz. In order
to make measurements of conductivity and dielectric
constant at given frequncy, separate pellets were used
for each temperature cycle. The reproducibility of the
results was checked by making many runs at different
times over the entire temperature and frequency range.
It is observed that the values of the conductivity and
the dielectric constant measurements were within ±2%
error in different runs. However, only the results of one
single run are reported here. No annealing effect on σac
(ω) and ε was observed for any glass below the glass
transition temperature Tg. The dielectric constant ε was
calculated by applying the following relation.

ε = (L/A)∗(Cx/ε0) (2)

Where Cx , is the capacitance of the sample in (farad),
L is the thickness of the pellet (m), A, the area of the
sample in (m2) and ε0 the permittivity of the free space
(ε0 = 8.85 × 10−12 f/m).

3. Results
3.1. Temperature and frequency

dependence of ac conductivity
Fig. 1 shows the temperature dependence ofσac (ω) over
the investigated frequency for the four different compo-
sitions of our Se0.75Ge0.25−x Asx with x = 0.05, 0.010,
0.15, and 0.20. It is observed from this figure that, the
ac conductivity is independent on temperature in the
considered range of temperature except after 353 K,
σac is very slowly increases with increasing tempera-
ture. The overall behavior of the curves is similar for
all the compositions under investigation. The measure-
ments of the σac conductivity for all the compositions
at the same frequency range, measured at room tem-
perature (RT ≈ 289 K) are reported in Fig. 2. It is clear
from the above figure that σac (ω) increases with in-
creasing the frequency and decreases with increasing
the As content. Fig. 3 represents the dependence of In
σac (ω) on In(ω) at different frequency and different
temperature for Se0.75Ge0.0.5As0.20, as a representative
example. Values of the exponent (s) were calculated

Figure 1 Variation of ac conductivity with temperature at different fre-
quencies for, Se0.75Ge0.25−x Asx at x = 0.05, 0.15 and 0.20.

Figure 2 Frequency dependence of ac conductivity in glassy Se0.75

Ge0.25−x Asx (x = 0.05, 0.10, 0.15 and 0.2) at room temperature.

from the slopes of these lines, for the composition un-
der test.

3.2. Temperature and frequency
dependence of the dielectric constant

Fig. 4 shows the frequency dependence of the calculated
values of the dielectric constant ε for the four alloys of
our Se0.75Ge0.25−x Asx system at constant temperature
(RT ≈ 289 K). The dielectric constant is approximately
constant with increasing frequency and decreases with
increasing the As contents, as shown in Fig. 4, while
according to Fig. 5, the relation between the dielec-
tric constant with temperature, and at a fixed frequency
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Figure 3 Frequency dependence of ac conductivity σac (ω) in glassy
Se0.75Ge0.25−x Asx at various temperatures.

Figure 4 Frequency dependence of the real part of permittivity ε tem-
perature (RT) for Se0.75Ge0.25−x Asx (0.05 ≤ X ≤ 0.2) glassy system.

F = 100 Hz, tends to be temperature independent below
350 K. Above this degree ε increases with increasing
the temperature as expected a dipolar system. The dipo-
lar system have been proposed by Mott et al. [12] for
chalcogenide glasses. According to their proposal, the
states which are formed near the Fermi level in the gap,
are due to dangling bonds and when 2D0 →D+ + D− is
exothermic, then only paired defect states are found in
the gap. As the temperature increases above 353 K the
dipoles slowly attain freedom of rotation. Under such
circumstance the σac (ω) is expected to become temper-
ature and frequency dependent. If the above assump-
tion is verified then, the measured values of ε should
be independent on temperature and frequency at low
temperatures, whereas at higher temperatures, ε should
increase with increasing temperature as expected in a
dipole system and decrease with increasing frequency

Figure 5 Temperature dependence of the real part ε for
Se0.75Ge0.15As0.1 (at 100 Hz and 100 KHz), Se0.75Ge0.1As0.15

and Se0.75Ge0.05As0.2 at 100 Hz.

(see Fig. 5 group a). This behavior is similar to those
of semiconducting glasses.

3.3. Structural role of lone pair electrons in
relation to rigidity percolation

The idea of overconstrained and underconstrained
glasses was introduced by Phillips [8, 9], then devel-
oped by Thorpe [13, 14]. According to Thorpe investi-
gation, a phase transition takes place when the average
coordination number, r , of the matrix increases such
that rigidity percolates the network. In calculating, r ,
there are several implicit assumptions; (i) each atom
should have its full complement of nearest neighbors,
and the coordination number follow the 8-N rule [14]
where N is valence (hence Ge, As and Se are 4, 3,
and 2-fold coordinated respectively); (ii) there should
be no voids surfaces; (iii) density/homogeneity of sites
should be approximately uniform; (iv) the number of
dangling bond, should be negligible in proportion to the
number of satisfied covalent bonds and (v) the chemical
identity of the matrix is submerged and topological con-
sideration are dominant. This final assumption leads to
a method of constraint counting which depends on as-
suming that stretching and bending forces constants of
covalent bonds are the major forces of the chemical net-
work while other, weaker intermolecular, forces are ig-
nored. For an atomic species with coordination number,
r , (given in this case by r = 2XSe + 4XGe + 3X As,
where X is the mole fraction) the number of constraints
per atom arising from bond-bending is Nβ = 2r − 3
and from bond stretching is Nα = r/2. The total num-
ber of constraints Ncon is the summed of the bond-
bending and the bond-stretching. These constraints are
summed across a matrix which has 3N degrees of free-
dom (N is the total number of atoms). The fraction of
floppy modes, f , is [3N -constraints/3N ] and can be
rewritten in the compact form as:

f = 2 − (5/6)r (3)

At the floppy-to-rigid transition where f = 0, then
rt = 2.4, where rt is the average coordination number
of the glass composition at the theoretical percolation
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T ABL E I Values of the coordination number (r ), the constraints (bending Nα , stretching Nβ and the total Ncon) and the floppy ( f ) for the
investigated compositions Se0.75Ge0.25−x Asx

Composition
Se0.75Ge0.25−x Asx r Nα Nβ Ncon f rt r − rt

x = 0.05 2.45 1.9 1.225 3.125 0 2.393 0.056
x = 0.10 2.40 1.8 1.2 3.0 0 2.387 0.0133
x = 0.15 2.35 1.7 1.175 2.875 0.042 2.380 −0.03
x = 0.20 2.30 1.6 1.15 2.75 0.083 2.373 −0.073

threshold. Table I shows the values of Nβ , Nα Ncon
along with, r , and f for different composition of the
Se0.75Ge0.25−x Asx glassy system. Mössbauer experi-
ments show that in Se0.75Ge0.25−x Asx , As, replaces Ge
in the network. The weaker bond-bending forces in,
As, allow one can ignore the associated constraints.
The addition of As, thus reduces the number of con-
straints per atom and this allow one to tune the system
through the rigidity-percolation threshold, which the-
ory predicts to be at rt = 2.4. As shown also in Table I,
at x = 0.10, r , is equal 2.4, and the quantity f goes to
zero at r = rt = 2.4, of course f can not be negative
and so within this simple mean field scheme we have
f = 0 for [r > rt]. In conclusion, we may say that our
Se0.75Ge0.25−x Asx glassy system is divided into two
kinds of regions that are designated rigid and floppy as
shown in Table I. For x = 0.05 and 0.10 were [r > rt]
the network is rigid and we refer to it as an amorphous
solids, whereas for [r < rt], at x = 0.15 and 0.20, the
network is not rigid and can be macroscopically de-
formed. This is referred to as a polymeric glass. The
previous section deals with the situation of neglecting
the presence of dangling bond, an attempt has been
made by us to calculate the average coordination num-
ber, when the dangling bond is included.

rt = 2.4 − 0.4(n1/N ) (4)

(where n1 atoms with coordination r (r = 2,3, or 4), and
N is the total number of atoms).

According to our knowledge, there is no existing data
for chalcogenide glasses in the literature available for
replotting against average coordination number minus
average coordination at the percolation there should
[r − rt] to give a large enough range of results, most
of the existing data were for chalcohalides [15]. Ta-
ble I shows a comparison of the average coordination
number, r , with the theoretical coordination number rt
for Se0.75Ge0.25−x Asx glassy system A positive value
in the final column indicates an overconstrained matrix
and a negative value indicates an underconstrained ma-
trix. As shown in Table I, at 10 at% Arsenic, r passes
closest to the theoretical percolation threshold rt, and
for large arsenic content the matrix acquires a negative
value for [r − rt] and should be under-constrained. The
fact that the minimum fragility occurred at 2.4 rather
than at the highest value of, r , as expected was regards
by Tatsumisago et al. [16] as evidence of specific chem-
ical effects such as double selenium bridges between
germanium centers. In order to understand the above
correlation in greater depth, it is necessary to discuss
the structural role of lone-pair electrons in achieving the
vitreous state. As we know most of the substances that

can solidify in the vitreous state are found to possess
structural “bridges”, that give rise to tri-dimensional, bi-
dimensional or linear heteropolymeric formation. The
existence of bridging atoms with lone-pair electrons can
eliminate the stain force caused by the formation of the
amorphous polyhedral polymer. This role of lone-pair
electrons can be understood in terms of valence shell
electron pair repulsion (VSEPR) theory proposed by
Gillespic [17]. Because of the electrostatic repulsion
and the repulsion caused by the Pauli exclusion princi-
ple, the valence electrons tend to avoid one another. If
all the valence electrons of a centric atom are used to
form bonds, the coordination polyhedral have a strictly
symmetrical structure. The configuration of polyhedra
with unshared electron pairs are similar to those of poly-
hedra with only shared pairs in the valence shell, except
that the unshared pairs occupy a large volume than the
shared pairs. The chemical bonds with lone-pair elec-
trons have a character of flexibility. It is easier to deform
a bond with lone-pair electrons than a bond with no un-
shared electrons. Increasing the number of lone-pair
electrons decreases the strain energy in a system and
structures with large numbers of lone-pair electrons fa-
vor glass formation. In order to calculate the number of
lone-pair electrons of a chalcogenide glass system, we
must introduce the average coordination number pro-
posed by Phillips [8]. The unshared lone-pair electrons
equal all the valence electrons of the system minus the
shared electrons, i.e.:

L = V − r (5)

where L and V are the lone-pair electrons and the va-
lence electrons, respectively. The number of lone-pair
electrons of our Se0.75Ge0.25−x Asx glassy system can be
obtained according to equation 5; the results are listed
in Table II. It seem from the above table that the number
of lone-pair electrons increases continuously with the
increase in the content of, As, in the Se0.75Ge0.25−x Asx

system. We can conclude from the results given above,
that some lone-pair electrons in the structure of a system
is a necessary condition for obtaining the system in a
vitreous state. Liang [18] introduced a simple criterion

TABLE I I Values of (r ), valence electron (V ) and lone-pair electrons
for the system under test

Composition
Se0.75Ge0.25−x Asx r V L

x = 0.05 2.45 5.5 3.1
x = 0.10 2.40 5.6 3.2
x = 0.15 2.35 5.65 3.3
x = 0.20 2.30 5.7 3.4
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for computing the ability of a chalcogenide system to
retain its vitreous state. The criterion contains the num-
ber of lone-pair electrons which is necessary for obtain-
ing the system in its vitreous state, for a ternary system
the number of lone-pair electrons must be larger than
1. The obtained data given in Table II agrees with the
former suggestion given by Liang.

3.4. The relation between the average heat
of atomization the optical gap and the
coordination number

According to Pauling [9] the heat of atomization Hs
(A-b) at standard temperature and pressure of a binary
semiconductor formed from atom A and B is the sum
of the heat of formation �H and the average of the
heats of atomization H A

s and H B
s that corresponds to

the average non-polar bond of the two atoms [10, 11]

Hs(A − B) = �H + (1/2)
(
H A

s + H B
s

)
(6)

The first term in Eq. (6) is proportional to the square of
the difference between the electronegativity χA and χB
of the two atoms:

�H ∝ (χA − χB)2 (7)

In order to extend this idea to ternary and higher order
semiconductor compounds, the average heat of atom-
ization HS is defined for the compound AαBβCδ as a
direct measure of the cohesive energy and thus of the
average bond strength, as [12, 13]:

Hs =
(
αH A

s + β H B
s + δH C

s

)

α + β + δ
(8)

In the few materials for which it is known, the amount
of the heat of formation �H is about 10% of the heat
of atomization and therefore is neglected. Hence, Hs
(A-B) is given quite well by:

Hs(A − B) = (1/2)
(
H A

s + H B
s

)
(9)

The results of Hs for Se0.75Ge0.25−x Asx with
x = 0.05,0.10, 0.15, and 0.20 using the values of Hs for
Se, Ge and, As (the Hs values used are in units K cal/gm-
atom are 49.4 for Se, 90 for Ge and 69 for As) are
listed in Table III. As seen from Table III, the value of
Hs decreases with the addition of, As. In chalcogenide
glasses containing a high concentration of a group VI
element, the lone-pair electrons form the top of the va-
lence band and the antibonding band forms the con-
duction band [24]. It is therefore interesting to relate
the optical gap �Eg with the chemical bond energy,
and the parameters we use to specify the bonding are
Hs and, r . The relation between the energy gap and the
average heat of atomization was discussed by Aigrain
et al. [25]. According to their study there exists a linear
correlation that can be expressed for the semiconductor
of the diamond and Zinc-blend structure by:

�Eg = a(Hs − b) (10)

TABLE I I I Effect of heat atomization (Hs), (r ) and optical gap (�Eg)
on investigated system

Composition Hs Hs/r �Eg

Se0.75Ge0.25−x Asx Kcal/g-atom r Kcal/g-atom (eV)

x = 0.05 58.50 2.45 23.87 1.98
x = 0.10 57.45 2.40 23.93 1.88
x = 0.15 56.40 2.35 24.00 1.81
x = 0.20 55.35 2.30 24.06 1.71

Figure 6 The optical gap Eg and the average heats of atomization per
single bond Hs/r in Se0.75Ge0.25−x Asx as a function of the composition
parameter x%.

where a and b are characteristic contents. In order to em-
phasize the relationship between the optical gap �Eg
and Hs, we used the optical gap of Se0.75Ge0.25−x Asx

given in [10] and are listed in Table III. Data listed in
Table III reveals that the addition of As leads to the
decrease of Hs as well as �Eg. Furthermore, since the
correlation between �Eg and Hs is very important, we
compare �Eg with [Hs/r ], the average single-bond en-
ergy in the alloy, which is easily computed from the
value of each composition. Fig. 6 represents �Eg in the
Se0.75Ge0.25−x Asx glassy systems as a function of com-
positional parameter x%. The relation between [Hs/r ],
“the dashed curve” for the same system is also plotted
as a function of composition parameter x . In the glassy
system no pronounced dependence of �Eg on x is ob-
served. This to be expected because the strengths of the
three bonds Ge-Se, As-Se and Se-Se are nearly in the
same order: 49.4, 41.69 and 44 K cal mole−1, respec-
tively [26]. If there is a linear relationship between the
bond strength and the average band gaps, and if one al-
lows superposition to describe the compounds, then the
addition of (As-Se) to Se0.75Ge0.25−x Asx will affect the
average band gap. By adding As to our glassy system,
the average bond strength of the compound decreases,
and hence Eg will decrease.

Hurst and Davis [27] explained these results by sug-
gesting that when the bond energies in the alloy are not
very different, the increase in disorder associated with
deviation from stoichiometry will tend to push the mo-
bility edges further into the bonds (Anderson transition)
thereby increasing �Eg. Furthermore, comparing �Eg
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T ABL E IV The ac conductivity σac (ω), the activation energy (ε), the barrier height (Wm) with glass transition for the compositions under test

Composition σac (ω) Wm Hs Tg

Se0.75Ge0.25−x Asx (�cm)−1 ε (eV) r Kcal/g-atom (C◦)

x = 0.05 1.1 × 10−7 20.2 2.66 2.45 58.50 273
x = 0.10 7 × 10−8 14.8 1.726 2.4 57.45 248
x = 0.15 6.2 × 10−8 13.3 1.684 2.35 56.40 165
x = 0.20 4 × 10−8 7.2 1.682 2.3 55.35 148

with Hs given in Table III, we can find a decrease in�Eg
with Hs on increasing x% of our Se0.75Ge0.25−x Asx sys-
tem. But according to [28], �Eg for overconstrained
materials with higher connectivity 4 ≥ r ≥ 3, depends
more strongly on Hs than for glasses with lower connec-
tivity 3 ≥ r ≥ 2. These results suggest that the parameter
Hs/r has a very small effect on �Eg, which was con-
firmed in our study “see dashed curve in Fig. 6”, since
Hs/r is approximately constant with x and �Eg has
no pronounced dependence also with the composition
parameter x%.

4. Analysis of results
The present values of σac (ω) are considered to be tem-
perature independent, however it has a linear variation
with the frequency as observed in the present results
of our Se Ge As glassy system. The dependence of
the frequency exponent (s) on temperature shown in
Fig. 3 indicates that the values of the exponent (s) de-
creases from 1.02 to 0.94, these results are consistent
with Elliott’s general features, concerning the amor-
phous semiconductor nature. The observed behavior
of s(T) may be analyzed by assuming that ac con-
duction mechanism is the correlated barrier hopping
(CBH) model, which allow us to consider, according
to Elliott [5] that, the hopping species to be double-
occupied bipolaron states as investigated in the work of
Mott et al.[12]

It is interesting to note that also the dielectric con-
stant according to Figs (4 and 5) are temperature in-
dependent on temperature below 353 K, and above the
previously mentioned degree ε starts to increase, this
behavior appear to be influenced considerably by the ef-
fect of dangling bonds. This idea have been applied to
amorphous semiconductors by Mott et al. [12, 29, 30].
The temperature dependence of (s) is also consistent
with the following law proposed by Long [30]

1 − s = (6kT )/Wm (11)

where k is the Boltzmann’s constant, T is the temper-
ature in K and Wm is the energy required to move the
electron from site to infinity.

The calculated values of Wm are given in Table IV for
all the different compositions of our Se Ge As glassy
system, in comparison with σac, ε, Hs, r , and Tg. The
data listed in Table IV reveal that the addition of As and
hence the submission of Ge leads to a decrease in all
the parameters mentioned above. In this respect Tg is
related to the coordination number r , since r indicates
the average number of bonds that need to be broken in
order to obtain fluidity, a decrease in r , leads to a de-

crease in Tg. Thorpe and co-workers [13, 14] suggested
that glasses having a higher chalcogen content are me-
chanically soft, these glasses can be compressed easily
without costing much energy. Also the decrease of σac,
ε, as well as Wm with the increase of As content could
be explained qualitatively by assuming a decrease in the
bond energy, which was discussed in Section 3–4 and
consequently confirmed by the decrease of Hs with the
increase of As content, and as we know Hs is defined
for a compound as a direct measure of the cohesive en-
ergy and thus of the average bond strength and hence
we suppose that this contribution of Hs is relevant to
the covalent bond approach and is proportional to some
overall mean bond energy. We believe that the agree-
ment between the theoretical and experimental results
is excellent, even when the dangling bonds are included
in a very simple way and adjusted to bring the coordina-
tion number to the correct coordination rt. In conclusion
we can say that the discussion given above helps us to
understand the correlation between the theoretical and
experimental results more deeply.
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